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1 The Problems of Induction

Induction is a method of inference that aims at gaining empirical knowledge. It has
two main characteristics: First, it is based on experience. (The term “experience”
is used interchangeably with “observations” and “evidence”.) Second, induction is
ampliative, that is, the conclusions of an inductive inference are not necessary, but
contingent. The first feature makes sure that induction targets empirical knowledge,
the second feature distinguishes induction from other modes of inference, such as
deduction, where the truth of the premises guarantees the truth of the conclusion.

Induction can have many forms. The most simple one is enumerative induction:
inferring a general principle or making a prediction based on the observation of par-
ticular instances. For example, if we have observed 100 black ravens and no non-black
ravens, we may predict that also raven #101 will be black. We may also infer the gen-
eral principle that all ravens are black. But induction is not tied to the enumerative
form and comprises all ampliative inferences from experience. For example, making
weather forecasts or predicting economic growth rates are highly complex inductive
inferences that amalgamate diverse bodies of evidence.

The first proper canon for inductive reasoning in science has been set up by Fran-
cis Bacon, in his Novum Organon (Bacon, 1620). Bacon’s emphasis is on learning the
cause of a scientifically interesting phenomenon. He proposes a method of elimina-
tive induction, that is, eliminating potential causes by coming up with cases where
the cause, but not the effect is present. For example, if the common flu occurs in a hot
summer period, then cold cannot be its (sole) cause. A similar method, though with
less meticulous devotion to the details, has been outlined by René Descartes (1637). In
his Discours de la Méthode, he explains how scientific problems should be divided into
tractable subproblems, and how their solutions should be combined.

Both philosopers realize that without induction, science would be blind to experi-
ence and unable to make progress. Hence their interest in spelling out the inductive
method in detail. However, they do not provide a foundational justification of inductive
inference. For this reason, C.D. Broad (1952, 142–143) stated that “inductive reasoning
[...] has long been the glory of science”, but a “scandal of philosophy”. This quote
brings us directly to the notorious problem of induction (for a survey, see Vickers,
2010).

Two problems of induction should be distinguished. The first, fundamental prob-
lem is about why we are justified to make inductive inferences, that is, why the method
of induction works at all. The second problem is about telling good from bad induc-
tions and developing rules of inductive inference. How do we learn from experience?
Which inferences about future predictions or general theories are justified by these ob-
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servations? And so on.
About 150 years after Bacon, David Hume (1739, 1748) was the first philosopher

to clearly point out how hard the first problem of induction is (Treatise On Human
Nature, 1739, Book I; Enquiry Concerning Human Understanding, 1748, Sections IV+V).
Like Bacon, Hume is interested in learning the causes of an event as a primary means
of acquiring scientific knowledge. Since causal relations cannot be inferred a priori, we
have to learn them from experience, that is, to use induction.

Hume divides all human reasoning into demonstrative and probabilistic reasoning.
He notes that learning from experience falls into the latter category: no amount of
observations can logically guarantee that the sun will rise tomorrow, that lightning is
followed by thunder, that England will continue to lose penalty shootouts, etc. In fact,
regularities of the latter sort sometimes cease to be true. Inductive inferences cannot
demonstrate the truth of the conclusion, but only make it probable.

This implies that inductive inferences have to be justified by non-demonstrative
principles. Imagine that we examine the effect of heat on liquids. We observe in
a number of experiments that water expands when heated. We predict that upon
repetition of the experiment, the same effect will occur. However, this is probable only
if nature does not change its laws suddenly: “all inferences from experience suppose,
as their foundation, that the future will resemble the past” (Hume, 1748, 32). We
are caught in a vicious circle: the justification of our inductive inferences invokes the
principle of induction itself. This undermines the rationality of our preference for
induction over other modes of inference, e.g., counter-induction.

The problem is that assuming the uniformity of nature in time can only be jus-
tified by inductive reasoning, namely our past observations to that effect. Notably,
also pragmatic justifications of induction, by reference to past successes, do not fly
since inferring from past to future reliability of induction also obeys the scheme of an
inductive inference (ibid.).

Hume therefore draws the skeptical conclusion that we lack a rational basis for
believing that causal relations inferred from experience are necessary or even probable.
Instead, what makes us associate causes and effects are the irresistisible psychological
forces of custom and habit. The connection between cause and effect is in the mind
rather than in the world, as witnessed by our inability to give an independent rational
justification of induction (Hume, 1748, 35–38).

Hume’s skeptical argument seems to undermine a lot of accepted scientific method.
If induction does not have a rational basis, why perform experiments, predict future
events and infer to general theories? Why science at all? Note that Hume’s challenge
also affects the second problem: if inductive inferences cannot be justified in an objec-
tive way, how are we going to tell which rules of induction are good and which are
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bad?
Influenced by Hume, Karl Popper (1959, 1983) developed a radical response to

the problem of induction. For him, scientific reasoning is essentially a deductive and
not an inductive exercise. A proper account of scientific method neither affords nor
requires inductive inference—it is about testing hypotheses on the basis of their pre-
dictions:

The best we can say of a hypothesis is that up to now it has been able to
show its worth [...] although, in principle, it can never be justified, verified,
or even shown to be probable. This appraisal of the hypothesis relies solely
upon deductive consequences (predictions) which may be drawn from the
hypothesis: There is no need even to mention “induction”. (Popper, 1959,
346)

For Popper, the merits of a hypothesis are not determined by the degree to which
past observations support it, but by its performances in severe tests, that is, sincere at-
tempts to overthrow it. Famous examples from science include the Michelson-Morley
experiment as a test of the ether theory and the Allais and Ellsberg experiments as
tests of Expected Utility Theory. Popper’s account also fits well with some aspects of
statistical reasoning, such as the common use of Null Hypothesis Significance Tests
(NHST): a hypothesis of interest is tested against a body of observations and “rejected”
if the result is particularly unexpected. Such experiments do not warrant inferring or
accepting a hypothesis; they are exclusively designed to disprove the null hypothesis
and to collect evidence against it. More on NHST will be said in Section 6.

According to Popper’s view of scientific method, induction in the narrow sense of
inferring a theory from a body of data is not only unjustified, but even superfluous.
Science, our best source of knowledge, assesses theories on the basis of whether their
predictions obtain. Those predictions are deduced from the theory. Hypotheses are
corroborated when they survive a genuine refutation attempt, when their predictions
were correct. Degrees of corroboration may be used to form practical preferences over
hypotheses. Of course, this also amounts to learning from experience and to a form
of induction, broadly conceived—but Popper clearly speaks out against the view that
scientific hypotheses with universal scope are ever guaranteed or made probable by
observations.

Popper’s stance proved to be influential in statistical methodology. In recent years,
philosopher Deborah Mayo and econometrist Aris Spanos have worked intensively
on this topic (e.g., Mayo, 1996; Mayo and Spanos, 2006). Their main idea is that our
preferences among hypotheses are based on the degree of severity with which they
have been tested. Informally stated, they propose that a hypothesis has been severely
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tested if (i) it fits well with the data, for some appropriate notion of fit; and (ii) if
the hypothesis were false, it would have been very likely to obtain data that favor the
relevant alternative(s) much more than the actual data do.

We shall, however, not go into the details of their approach and return to the second
problem of induction: how should we tell good from bad inductions?

2 Logical Rules for Inductive Inference

Hume’s skeptical arguments show how difficult it is to argue for the reliability and
truth-conduciveness of inductive inference. However, this conclusion sounds more
devastating than it really is. For example, on a reliabilist view of justification (Gold-
man, 1986), beliefs are justified if generated by reliable processes that usually lead to
true conclusions. If induction is factually reliable, our inductive inferences are jus-
tified even if we cannot access the reasons for why the method works. In a similar
vein, John Norton (2003) has discarded formal theories of induction (e.g., those based
on the enumerative scheme) and endorsed a material theory of induction: inductive
inferences are justified by their conformity to facts.

Let us now return to the second problem of induction, that is, developing (possibly
domain-sensitive) rules of induction—principles that tell good from bad inductive in-
ferences. In developing these principles, we will make use of the method of reflective
equilibrium (Goodman, 1955): we balance scientific practice with normative consid-
erations, e.g., which methods track truth in the idealized circumstances of formal
models. Good rules of induction are those that explain the success of science and that
have at the same time favorable theoretical properties. The entire project is motivated
by the analogy to deductive logic, where rules of inference have been useful at guiding
our logical reasoning. So why not generalize the project to inductive logic, to rules of
reasoning under uncertainty and ampliative inferences from experience?

Inductive logic has been the project of a lot of 20th century philosophy of science.
Sometimes it also figures under the heading of finding criteria for when evidence
confirms (or supports) a scientific hypothesis. The presence of a confirmation rela-
tion, or the degree to which a hypothesis is confirmed, provides a criterion for the
soundness of an inductive inference. It is therefore sensible to explicate the concept
of confirmation: to replace our vague pre-theoretical concept, the explicandum, with a
simple, exact and fruitful concept that still resembles the explicandum—the explicatum
(Carnap, 1950, 3–7). The explication can proceed quantitatively, specifying degrees
of confirmation, or qualitatively, as an all-or-nothing relation between hypothesis and
evidence. We will first look at qualitative analyses in first-order logic since they outline
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the logical grammar of the concept. Several features and problems of qualitative ac-
counts carry over to and motivate peculiar quantitative explications (Hempel, 1945a).

Scientific laws often take the logical form ∀x : Fx → Gx, that is, all F’s are also
G’s. For instance, take Kepler’s First Law that all planets travel in an elliptical orbit
around the sun. Then, it is logical to distinguish two kinds of confirmation of such
laws, as proposed by Jean Nicod (1961, 23–25): L’induction par l’infirmation proceeds by
refuting and eliminating other candidate hypotheses (e.g., the hypothesis that planets
revolve around the Earth). This is basically the method of eliminative induction that
Bacon applied to causal inference. L’induction par la confirmation, by contrast, supports
a hypothesis by citing their instances (e.g., a planet which has an elliptical orbit around
the sun). This is perhaps the simplest and most natural account of scientific theory
confirmation. It can be expressed as follows:

Nicod Condition (NC): For a hypothesis of the form H = ∀x : Fx →
Gx and an individual constant a, an observation report of the form Fa.Ga
confirms H.

However, (NC) fails to capture some essentials of scientific confirmation—see Sprenger
(2010) for details. Consider the following highly plausible adequacy condition, due to
Carl G. Hempel (1945a,b):

Equivalence Condition (EC): If H and H′ are logically equivalent sen-
tences, then E confirms H if and only if E confirms H′.

(EC) should be satisfied by any logic of confirmation because otherwise, the estab-
lishment of a confirmation relation would depend on the peculiar formulation of the
hypothesis, which would contradict our goal of finding a logic of inductive inference.

Combining (EC) with (NC) leads, however, to paradoxical results. Let H = ∀x :
Rx → Bx stand for the hypothesis that all ravens are black. H is equivalent to the
hypothesis H′ = ∀x : ¬Bx → ¬Rx that no non-black object is a raven. A white shoe is
an instance of this hypothesis H′. By (NC), observing a white shoe confirms H′, and
by (EC), it also confirms H. Hence, observing a white shoe confirms the hypothesis
that all ravens are black! But a white shoe appears to be an utterly irrelevant piece
of evidence for assessing the hypothesis that all ravens are black. This result is often
called the paradox of the ravens (Hempel, 1945a, 13–15) or, after its inventor, Hempel’s
paradox.

How should we deal with this problem? Hempel suggests to bite the bullet and to
accept that the observation of a white shoe confirms the raven hypothesis. After all,
the observation eliminates a potential falsifier. To push this intuition further, imagine
that we observe a grey, raven-like bird, and only after extended scrutiny we find out
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that it is a crow. There is certainly a sense in which the crowness of that bird confirms
the raven hypothesis, which was already close to refutation.

Hempel (1945a,b) implements this strategy by developing a more sophisticated
version of Nicod’s instance confirmation criterion where background knowledge plays
a distinct role, the so-called Satisfaction Criterion. We begin with the formulation of
direct confirmation, which also captures the main idea of Hempel’s proposal:

Direct Confirmation (Hempel) A piece of evidence E directly Hempel-confirms a hy-
pothesis H relative to background knowledge K if and only if E and K jointly entail
the development of H to the domain of E—that is, the restriction of H to the set
of individual constants that figure in E. In other words, E.K |= H|dom(E).

The idea of this criterion is that our observation verify a general hypothesis, as
restricted to the actually observed objects. Hempel’s Satisfaction Criterion generalizes
this intution by demanding that a hypothesis be confirmed whenever it is entailed by
a set of directly confirmed sentences. Notably, Clark Glymour’s account of bootstrap
confirmation is also based on Hempel’s Satisfaction Criterion (Glymour, 1980b).

However, Hempel did not notice that the Satisfaction Criterion does not resolve the
raven paradox: E = ¬Ba directly confirms the raven hypothesis H relative to K = ¬Ra
(because E.K |= H{a}). Thus, even objects that are known not to be ravens can confirm
the hypothesis that all ravens are black. This is clearly an unacceptable conclusion and
invalidates the Satisfaction Criterion as an acceptable account of qualitative confirma-
tion, whatever its other merits may be (Fitelson and Hawthorne, 2011).

Hempel also developed several adequacy criteria for confirmation, intended to
narrow down the set of admissible explications. We have already encountered one of
them, the Equivalence Condition. Another one, the Special Consequence Condition,
claims that consequences of a confirmed hypothesis are confirmed as well. Hypotheses
confirmed by a particular piece of evidence form a deductively closed set of sentences.
The Satisfaction criterion conforms to this condition, as one can easily check from the
definition. It also satisfies the Consistency Condition which demands (inter alia) that
no contingent evidence supports two hypotheses which are inconsistent with each
other. This sounds very plausible, but as noted by Nelson Goodman (1955) in his
book “Fact, Fiction and Forecast”, that condition conflicts with powerful inductive
intuitions. Consider the following inference:

Observation: emerald e1 is green.
Observation: emerald e2 is green.
. . .
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Generalization: All emeralds are green.

This seems to be a perfect example of a valid inductive inference. Now define the
predicate “grue”, which applies to all green objects if they were observed for the first
time prior to time t = “now”, and to all blue objects if observed later. (This is just a
description of the extension of the predicate—no object is supposed to change color.)
The following inductive inference satisfies the same logical scheme as the previous
one:

Observation: emerald e1 is grue.
Observation: emerald e2 is grue.
. . .

Generalization: All emeralds are grue.

In spite of the gerrymandered nature of the “grue” predicate, the inference is
sound: it satisfies the basic scheme of enumerative induction, and the premises are
undoubtedly true. But then, it is paradoxical that two valid inductive inferences sup-
port flatly opposite conclusions. The first generalization predicts emeralds observed
in the future to be green, the second generalization predicts them to be blue. How do
we escape from this dilemma?

Goodman considers the option that in virtue of its gerrymandered nature, the
predicate “grue” should not enter inductive inferences. He notes, however, that it is
perfectly possible to re-define the standard predicates “green” and “blue” in terms of
“grue” and its conjugate predicate “bleen” (=blue if observed prior to t, else green).
Hence, any preference for the “natural” predicates and the “natural” inductive infer-
ence seems to be arbitrary. Unless we want to give up on the scheme of enumerative
induction, we are forced into dropping Hempel’s Consistency Condition, and to ac-
cept the paradoxical conclusion that both conclusions (all emeralds are green/grue)
are, at least to a certain extent, confirmed by past observations. The general moral
is that conclusions of an inductive inference need not be consistent with each other,
unlike in deductive logic.

Goodman’s example, often called the new riddle of induction, illustrates that es-
tablishing rules of induction and adequacy criteria for confirmation is not a simple
business. From a normative point of view, the Consistency Condition looks appeal-
ing, yet, it clashes with intuitions about paradigmatic cases of enumerative inductive
inference. The rest of this chapter will therefore focus on accounts of confirmation
where inconsistent hypotheses can be confirmed simultaneously by the same piece of
evidence.
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A prominent representative of these accounts is Hypothetico-Deductive (H-D)
confirmation. H-D confirmation considers a hypothesis to be confirmed if empiri-
cal predictions deduced from that hypothesis turn out to be successful (Gemes, 1998;
Sprenger, 2011). An early description of H-D confirmation was given by William
Whewell:

Our hypotheses ought to foretel phenomena which have not yet been ob-
served . . . the truth and accuracy of these predictions were a proof that the
hypothesis was valuable and, at least to a great extent, true. (Whewell,
1847, 62–63)

Indeed, science often proceeds that way: Our best theories about the atmospheric sys-
tem suggest that emissions of greenhouse gases such as CO2 and Methane lead to
global warming. That hypothesis has been confirmed by its successful predictions,
such as shrinking arctic ice sheets, increasing global temperatures, its ability to back-
track temperature variations in the past, etc. The hypothetico-deductive concept of
confirmation explicates the common idea of these and similar examples by stating
that evidence confirms a hypothesis if we can derive it from the tested hypothesis, to-
gether with suitable background assumptions. H-D confirmation thus naturally aligns
with the Popperian method for scientific inquiry which emphasizes the value of risky
predictions, the need to test our scientific hypotheses as severely as possible, to derive
precise predictions and to check them with reality.

An elementary account of H-D confirmation is defined as follows:

Hypothetico-Deductive (H-D) Confirmation E H-D-confirms H relative to back-
ground knowledge K if and only if

1. H.K is consistent,

2. H.K entails E (H.K |= E),

3. K alone does not entail E.

The explicit role of background knowledge can be used to circumvent the raven
paradox along the lines that Hempel suggested. Neither Ra.Ba nor ¬Ba.¬Ra confirms
the hypothesis H = ∀x : Rx → Bx, but Ba (“a is black”) does so relative to the background
knowledge Ra, and ¬Ra (“a is no raven”) does so relative to the background knowledge ¬Ba.
This makes intuitive sense: Only if we know a to be a raven, the observation of his
color is evidentially relevant; and only if a is known to be non-black, the observation
that it is no raven supports the hypothesis that all ravens are black, in the sense of
eliminating a potential falsifier.
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While the H-D account of confirmation fares well with respect to the raven para-
dox, it has a major problem. Irrelevant conjunctions can be tacked to the hypothesis H
while preserving the confirmation relation (Glymour, 1980a).

Tacking by Conjunction Problem: If H is confirmed by a piece of evidence
E (relative to any K), H.X is confirmed by the same E for an arbitrary X
that is consistent with H and K.

It is easy to see that this phenomenon is highly unsatisfactory: Assume that the wave
nature of light is confirmed by Young’s double slit experiment. According to the H-D
account of confirmation, this implies that the following hypothesis is confirmed: ‘Light
is an electromagnetic wave and the star Sirius is a giant bulb.’ This sounds completely
absurd.

To see that H-D confirmation suffers from the tacking problem, let us just check the
three conditions for H-D confirmation: Assume that some hypothesis X is irrelevant
to E, and that H.X.K is consistent. Let us also assume H.K |= E and that K alone does
not entail E. Then, E confirms not only H, but also H.X (because H.K |= E implies
H.K.X |= E).

Thus, tacking an arbitrary irrelevant conjunct to a confirmed hypothesis preserves
the confirmation relation. This is very unsatisfactory. More generally, H-D confirma-
tion needs an answer to why a piece of evidence does not confirm every theory that
implies it. Solving this problem is perhaps not impossible (Schurz, 1991; Gemes, 1993;
Sprenger, 2013), but comes at the expense of major technical complications that com-
promise the simplicity and intuitive appeal of the hypothetico-deductive approach of
confirmation.

In our discussion, several problems of qualitative confirmation have surfaced. First,
qualitative confirmation is grounded on deductive relations between theory and ev-
idence. These are quite an exception in modern, statistics-based science which stan-
dardly deals with messy bodies of evidence. Second, we saw that few adequacy condi-
tions have withstood the test of time, making times hard for developing a qualitiative
logic of induction. Third, no qualitative account measures degree of confirmation and
tells strongly from weakly confirmed hypotheses, although this is essential for a great
deal of scientific reasoning. Therefore we now turn to quantitative explications of
confirmation.

3 Probability as Degree of Confirmation

The use of probability as a tool for describing degree of confirmation can be motivated
in various ways. Here are some major reasons.
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First, probability is, as quipped by Cicero, “the guide to life”. Judgments of prob-
ability motivate our actions: e.g., the train I want to catch will probably be on time, so
I have to run to catch it. Probability is used for expressing forecasts about events that
affect our lives in manifold ways, from tomorrow’s weather to global climate, from
economic developments to the probability of a new Middle East crisis. This paradigm
was elaborated by philosophers and scientists such as Ramsey (1926), De Finetti (1937)
and Jeffrey (1965).

Second, probability is the preferred tool for uncertain reasoning in science. Proba-
bility distributions are used for characterizing the value of a particular physical quan-
tity or for describing measurement error. Theories are assessed on the basis of proba-
bilistic hypothesis tests. By phrasing confirmation in terms of probability, we hope to
connect philosophical analysis of inductive inference to scientific practice and integrate
the goals of normative and descriptive adequacy (Howson and Urbach, 2006).

Third, statistics, the science of analysing and interpreting data, is couched in prob-
ability theory. Statisticians have proved powerful mathematical results on the foun-
dations of probability and inductive learning. Analyses of confirmation may benefit
from them, and have done so in the past (e.g., Good, 2009). Consider, for example,
the famous De Finetti (1974) representation theorem for subjective probability or the
convergence results for prior probability distributions by Gaifman and Snir (1982).

Fourth and last, increasing the probability of a conclusion seems to be the hallmark
of a sound inductive inference, as already noted by Hume. Probability theory, and the
Bayesian framework in particular, are especially well suited for capturing this intuition.
The basic idea is to explicate degree of confirmation in terms of degrees of belief, which
satisfy the axioms of probability. Degrees of belief are changed by Conditionalization
(if E is learned, pnew(H) = p(H|E)), and the posterior probability p(H|E) stands as
the basis of inference and decision-making. This quantity can be calculated via Bayes’
Theorem:

p(H|E) = p(H)
p(E|H)

p(E)

The chapter on Probabilism provides more detail on the foundations of Bayesianism.
We now assume that degree of confirmation only depends on the joint probability

distribution of the hypothesis H, the evidence E and the background assumptions K.
More precisely, we assume that E, H and K are among the closed sentences L of a lan-
guage L that describes our domain of interest. A Bayesian theory of confirmation can
be explicated by a function L3×P→ R, where P is the set of probability measures on
the algebra generated by L. This function assigns a real-valued degree of confirmation
to any triple of sentences together with a probability (degree of belief) function. For
the sake of simplicity, we will omit explicit reference to background knowledge since
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most accounts incorporate it by using the probability function p(·|K) instead of p(·).
A classical method for explicating degree of confirmation is to specify adequacy

conditions on the concept and to derive a representation theorem for a confirmation
measure. This means that one characterizes the set of measures (and possibly the
unique measure) that satisfies these constraints. This approach allows for a sharp
demarcation and mathematically rigorous characterization of the explicandum, and at
the same time for critical discussion of the explicatum, by means of defending and
criticizing the properties which are encapsulated in the adequacy conditions.

The first constraint is mainly of formal nature and serves as a tool for making
further constraints more precise and facilitating proofs (Crupi, 2013):

Formality For any sentences H, E ∈ L with probability measure p(·), c(H, E) is a
measurable function from the joint probability distribution of H and E to a real
number c(H, E) ∈ R. In particular, there exists a function f : [0, 1]3 → R such
that c(H, E) = f (p(H ∧ E), p(H), p(E)).

Since the three probabilities p(H ∧ E), p(H), p(E) suffice to determine the joint prob-
ability distribution of H and E, we can express c(H, E) as a function of these three
arguments.

Another cornerstone for Bayesian explications of confirmation is the following
principle:

Final Probability Incrementality For any sentences H, E, and E′ ∈ L with probability
measure p(·),

c(H, E) > c(H, E′) if and only if p(H|E) > p(H|E′), and

c(H, E) < c(H, E′) if and only if p(H|E) < p(H|E′).

According to this principle, E confirms H more than E′ does if it raises the probability
of H to a higher level. Given the basic intuition that degree of confirmation should
co-vary with boost in degree of belief, satisfactory Bayesian explications of degree of
confirmation should arguably satisfy this condition.

There are now two main roads for adding more conditions, which will ultimately
lead us to two different explications of confirmation: as firmness and as increase in
firmness (or evidential support). They are also called the absolute and the incremen-
tal concept of confirmation.

Consider the following condition:
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Local Equivalence For any sentences H, H′, and E ∈ L with probability measure p(·),
if H and H′ are logically equivalent given E (i.e., E.H |= H′, E.H′ |= H), then
c(H, E) = c(H′, E).

The plausible idea behind Local Equivalence is that E confirms the hypotheses H
and H′ to an equal degree if they are logically equivalent conditional on E. If we
buy into this intuition, Local Equivalence allows for a powerful (yet unpublished)
representation theorem by Michael Schippers (see Crupi, 2013):

Theorem 1 Formality, Final Probability Incrementality and Local Equivalence hold if
and only if there is a non-decreasing function g : [0, 1]→ R such that for any H, E ∈ L

and any p(·), c(H, E) = g(p(H|E)).

On this account, scientific hypotheses count as well-confirmed whenever they are
sufficiently probable, that is, when p(H|E) exceeds a certain (possibly context-relative)
threshold. Hence, all confirmation measures that satisfy the three above constraints
are ordinally equivalent, that is, they can be mapped on each other by means of a non-
decreasing function. In particular, their confirmation rankings agree: if there are two
functions g and g′ that satisfy Theorem 1, with associated confirmation measures c
and c′, then c(H, E) ≥ c(H′, E′) if and only if c′(H, E) ≥ c′(H′, E′). Since confirmation
as firmness is a monotonically increasing function of p(H|E), it is natural to set up the
qualitative criterion that E confirms H (in the absolute sense) if and only if p(H|E) ≥ t
for some t ∈ [0, 1].

A nice consequence of the view of confirmation as firmness is that some longstand-
ing problems of confirmation theory, such as the paradox of irrelevant conjunctions,
dissolve. Remember that on the H-D account of confirmation, it was hard to avoid the
conclusion that if E confirmed H, then it also confirmed H ∧H′ for an arbitrary H′. On
the view of confirmation as firmness, we automatically obtain c(H ∧ H′, E) ≤ c(H, E).
These quantities are non-decreasing functions of p(H ∧ H′|E) and p(H|E), respec-
tively, and they differ the more the less plausible H′ is, and the less it coheres with
H. Confirmation as firmness gives the intuitively correct response to the tacking by
conjunction paradox.

It should also be noted that the idea of confirmation as firmness corresponds to
Carnap’s concept of probability1 or “degree of confirmation” in his inductive logic.
Carnap (1950) defines the degree of confirmation of a theory H relative to total evi-
dence E as its probability conditional on E:

c(H, E) := p(H|E) = m(H ∧ E)
m(E)
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where this probability is in turn defined by the measure m that descriptions of the
(logical) universe receive. By the choice of the measure m and a learning parameter
λ, Carnap (1952) characterizes an entire continuum of inductive methods from which
three prominent special cases can be derived. First, inductive skepticism: the degree of
confirmation of a hypothesis is not changed by incoming evidence. Second, the rule of
direct inference: the degree of confirmation of the hypothesis equals the proportions of
observations in the sample for which it is true. Third, the rule of succession (de Laplace,
1814), a prediction principle which corresponds to Bayesian inference with a uniform
prior distribution. Carnap thus ends up with various inductive logics that characterize
different attitudes toward ampliative inference.

Carnap’s characterization of degree of confirmation does not always agree with the
use of that concept in scientific reasoning. Above all, a confirmatory piece of evidence
often provides a good argument for a theory, even if the latter is unlikely. For instance,
in the first years after Einstein invented the General Theory of Relativity (GTR), many
scientists did not have a particularly high degree of belief in GTR because of its coun-
terintuitive nature. However, it was agreed upon that GTR was well-confirmed by its
predictive and explanatory successes, such as the bending of starlight by the sun and
the explanation of the Mercury perihelion shift (Earman, 1992). The account of confir-
mation as firmness fails to capture this intuition. The same holds for experiments in
present-day science whose confirmatory strength is not evaluated on the basis of the
posterior probability of the tested hypothesis H, but by whether the results provide
significant evidence in favor of H, that is, whether they are more expected under H
than under ¬H.

This last point brings us to a particularly unintuitive consequence of confirmation
as firmness: E could confirm H even if it lowers the probability of H, as long as
p(H|E) is still large enough. But nobody would call an experiment where the results
E are negatively statistically relevant to H a confirmation of H. This brings us to the
following natural definition:

Confirmation as increase in firmness For any sentences H, E ∈ L with probability
measure p(·),

1. Evidence E confirms/supports hypothesis H (in the incremental sense) if
and only if p(H|E) > p(H).

2. Evidence E disconfirms/undermines hypothesis H if and only if p(H|E) <
p(H).

3. Evidence E is neutral with respect to H if and only if p(H|E) = p(H).
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W1 W2

Black ravens 100 1,000
Non-black ravens 0 1

Other birds 1,000,000 1,000,000

Table 1: I.J. Good’s (1967) counterexample to the paradox of the ravens.

In other words, E confirms H if and only E raises our degree of belief in H. Such ex-
plications of confirmation are also called statistical relevance accounts of confirmation
because the neutral point is determined by the statistical independence of H and E.
The analysis of confirmation as increase in firmness is the core business of Bayesian
Confirmation Theory, where the relevant probabilities are interpreted as subjective
degrees of belief. This approach receives empirical support from findings by Tentori
et al. (2007): ordinary people use the concept of confirmation in a way that can be
dissociated from posterior probability and that is strongly correlated with measures of
confirmation as increase in firmness.

Confirmation as increase in firmness has interesting relations to qualitative ac-
counts of confirmation and the paradoxes we have encountered. For instance, H-D
confirmation now emerges as a special case: if H entails E, then p(E|H) = 1 and by
Bayes’ Theorem, p(H|E) > p(H) (unless p(E) was equal to one in the first place).
We can also spot what is wrong with the idea of instance confirmation. Remember
Nicod’s (and Hempel’s) original idea, namely that universal generalizations such as
H = ∀x : Rx → Bx are confirmed by their instances. This is certainly true relative to
some background knowledge. However, it is not true under all circumstances. I.J. Good
(1967) constructed a simple counterexample in a note for the British Journal for the Phi-
losophy of Science: There are only two possible worlds, W1 and W2, whose properties
are described by Table 1.

Thus, H is true whenever W1 is the case, and false whenever W2 is the case. Con-
ditional on these peculiar background assumptions, the observation of a black raven
is evidence that W2 is the case and therefore evidence that not all ravens are black:

P(Ra.Ba|W1) =
100

1, 000, 100
<

1, 000
1, 001, 001

= P(Ra.Ba|W2).

By an application of Bayes’ Theorem, we infer P(W1|Ra.Ba) < P(W1), and given
W1 ≡ H, this amounts to a counterexample to Nicod’s Condition (NC). Universal
conditionals are not always confirmed by their positive instances. We see how con-
firmation as increase in firmness elucidates our pre-theoretic intuitions regarding the
theory-evidence relation, and that the relevant background assumptions make a huge
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difference as to when a hypothesis is confirmed.
Confirmation as increase in firmness also allows for a solution of the comparative

paradox of the ravens. That is, we can show that relative to weak and plausible back-
ground assumptions, p(H|Ra.Ba) < p(H|¬Ra.¬Ba) (Fitelson and Hawthorne, 2011,
Theorem 2). By Final Probability Incrementality, this implies that Ra.Ba confirms H
more than ¬Ra.¬Ba does. This shows, ultimately, why we consider a black raven to
be more important evidence for the raven hypothesis than a white shoe.

Looking back to qualitative accounts once more, we see that Hempel’s original ad-
equacy criteria are mirrored in the logical properties of confirmation as firmness and
increase in firmness. According to the view of confirmation as firmness, every con-
sequence H′ of a confirmed hypothesis H is confirmed, too (because p(H′) ≥ p(H)).
This conforms to Hempel’s Special Consequence Condition. The view of confirmation
as increase in firmness relinquishes this condition, however, and obtains a number of
attractive results in return.

4 Degree of Confirmation: Monism or Pluralism?

So far, we have not yet answered the question of how degree of confirmation (or evi-
dential support) should be quantified. For scientists who want to report the results of
their experience and quantify the strength of the observed evidence, this is certainly
the most interesting question. It is also crucial for giving a Bayesian answer to the
Duhem-Quine problem (Duhem, 1914). If an experiment fails and we ask ourselves
which hypothesis to reject, the degree of (dis)confirmation of the involved hypotheses
can be used to evaluate their standing. Unlike purely qualitative accounts of confir-
mation, a measure of degree of confirmation can indicate which hypothesis we should
discard. For this reason, the search for a proper confirmation measure is more than a
technical exercise: it is of vital importance for distributing praise and blame between
different hypotheses that are involved in an experiment. The question, however, is
which measure should be used. This is the questions separating monists and plural-
ists in confirmation theory: monists believe that there is a single adequate or superior
measure—a view that can be supported by theoretical reasons (Milne, 1996; Crupi
et al., 2007) and empirical research, e.g., coherence with folk confirmation judgments
(Tentori et al., 2007). Pluralists think that such arguments do not specify a single
adequate measure and that there are several valuable and irreducible confirmation
measures (e.g., Fitelson, 1999, 2001; Eells and Fitelson, 2000).

Table 2 provides a rough survey of the measures that are frequently discussed in
the literature. We have normalized them such that for each measure c(H, E), con-
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Difference Measure d(H, E) = p(H|E)− p(H)

Log-Ratio Measure r(H, E) = log p(H|E)
p(H)

Log-Likelihood Measure l(H, E) = log p(E|H)
p(E|¬H)

Kemeny-Oppenheim Measure k(H, E) = p(E|H)−p(E|¬H)
p(E|H)+p(E|¬H)

Rips Measure r′(H, E) = p(H|E)−p(H)
1−p(H)

Crupi-Tentori Measure z(H, E) =


p(H|E)−p(H)

1−p(H)
if p(H|E) ≥ p(H)

p(H|E)−p(H)
p(H)

if p(H|E) < p(H)

Christensen-Joyce Measure s(H, E) = p(H|E)− p(H|¬E)

Carnap’s Relevance Measure c′(H, E) = p(H ∧ E)− p(H)p(E)

Table 2: A list of popular measures of evidential support.

firmation amounts to c(H, E) > 0, neutrality to c(H, E) = 0 and disconfirmation to
c(H, E) < 0. This allows for a better comparison of the measures and their properties.

Evidently, these measures all have quite distinct properties. We shall now transfer
the methodology from our analysis of confirmation as firmness, and characterize them
in terms of representation results. As before, Formality and Final Probability Incre-
mentality will serve as minimal reasonable constraints on any measure of evidential
support. Notably, two measures in the list, namely c′ and s, are incompatible with Fi-
nal Probability Incrementality, and objections based on allegedly vicious symmetries
have been raised against c′ and r (Fitelson, 2001; Eells and Fitelson, 2002).

Here are further constraints on measures of evidential support that exploit the
increase of firmness intuition in different ways:

Disjunction of Alternatives If H and H′ are mutually exclusive, then

c(H, E) > c(H ∨ H′, E′) if and only if p(H′|E) > p(H′),

with corresponding conditions for c(H, E) = c(H ∨ H′, E′) and c(H, E) < c(H ∨
H′, E′).

That is, E confirms H ∨ H′ more than H if and only if E is statistically relevant to
H′. The idea behind this condition is that the sum (H ∨ H′) is confirmed to a greater
degree than each of the parts (H, H′) when each part is individually confirmed by E.

Law of Likelihood

c(H, E) > c(H′, E) if and only if p(E|H) > p(E|H′),
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with corresponding conditions for c(H, E) = c(H′, E′) and c(H, E) < c(H′, E′).

This condition has a long history of discussion in philosophy and statistics (e.g., Hack-
ing, 1965; Edwards, 1972). The idea is that E favors H over H′ if and only the likelihood
of H on E is greater than the likelihood of H′ on E. In other words, E is more expected
under H than under H′. Law of Likelihood also stands at the basis of the likelihoodist
theory of confirmation, which analyzes confirmation as a comparative relation between
two competing hypotheses (Royall, 1997; Sober, 2008). Likelihoodists eschew judg-
ments on how much E confirms H without reference to specific alternatives.

Modularity If p(E|H ∧ E′) = p(E|H) and p(E|¬H ∧ E′) = p(E|¬H), then c(H, E) =

c|E′(H, E) where c|E′ denotes confirmation relative to the probability distribution
conditional on E′.

This constraint screens off irrelevant evidence. If E′ does not affect the likelihoods of
H and ¬H on E, then conditioning on E′—now supposedly irrelevant evidence—does
not alter the degree of confirmation.

Contraposition/Commutativity If E confirms H, then c(H, E) = c(¬E,¬H); and if E
disconfirms H, then c(H, E) = c(E, H).

These constraints are motivated by the analogy of confirmation to partial deductive
entailment. If H ` E, then also ¬E ` ¬H, and if E refutes H, then H also refutes E.
If confirmation is thought of as a generalization of deductive entailment to uncertain
inference, then these conditions are very natural and reasonable (Tentori et al., 2007).

Combined with Formality and Final Probability Incrementality, each of these four
principles singles out a specific measure of confirmation, up to ordinal equivalence
(Heckerman, 1988; Crupi et al., 2013; Crupi, 2013):

Theorem 2 (Representation Results for Confirmation Measures) .

1. If Formality, Final Probability Incrementality and Disjunction of Alternatives
hold, then there is a non-decreasing function g such that c(H, E) = g(d(H, E)).

2. If Formality, Final Probability Incrementality and Law of Likelihood hold, then
there is a non-decreasing function g such that c(H, E) = g(r(H, E)).

3. If Formality, Final Probability Incrementality and Modularity hold, then there are
non-decreasing functions g and g′ such that c(H, E) = g(l(H, E)) and c(H, E) =
g′(k(H, E)). Note that k and l are ordinally equivalent.

4. If Formality, Final Probability Incrementality and Commutativity hold, then
there is a non-decreasing function g such that c(H, E) = g(z(H, E)).
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That is, many confirmation measures can be chacterized by means of a small set of
adequacy conditions. It should also be noted that the Bayes factor, a popular measure
of evidence in Bayesian statistics (Kass and Raftery, 1995), falls under the scope of
the theorem since it is ordinally equivalent to the log-likelihood measure l and the
Kemeny and Oppenheim (1952) measure k. This is also evident from its mathematical
form

BF(H0, H1, E) :=
p(H0|E)
p(H1|E)

· p(H1)

p(H0)
=

p(E|H0)

p(E|H1)

for mutually exclusive hypotheses H0 and H1 (for which H and ¬H may be substi-
tuted).

To show that the difference between these measures has substantial philosophical
ramifications, let us go back to the problem of irrelevant conjunctions. If we analyze
this problem in terms of the ratio measure r, then we obtain, assuming H ` E, that for
an “irrelevant” conjunct H′,

r(H ∧ H′, E) = p(H ∧ H′|E)/p(H ∧ H′) = p(E|H ∧ H′)/p(E)

= 1/p(E) = p(E|H)/p(E)

= r(H, E)

such that the irrelevant conjunction is supported to the same degree as the original
hypothesis. This consequence is certainly unacceptable as a judgment of evidential
support since H′ could literally be any hypothesis unrelated to the evidence, e.g., “the
star Sirius is a giant light bulb”. In addition, the result does not only hold for the
special case of deductive entailment: it holds whenever the likelihoods of H and H ∧ H′

on E are the same, that is, p(E|H ∧ H′) = p(E|H).
The other measures fare better in this respect: whenever p(E|H ∧ H′) = p(E|H),

all other measures in Theorem 2 reach the conclusion that c(H ∧ H′, E) < c(H, E)
(Hawthorne and Fitelson, 2004). In this way, we can see how Bayesian Confirmation
Theory improves on H-D confirmation and other qualitative accounts of confirmation:
the paradox is acknowledged, but at the same time, it is demonstrated how it can be
mitigated.

That said, it is difficult to form preferences over the remaining measures. Compar-
ing the adequacy conditions might not lead to conclusive results, due to the divergent
motivations which support them. Moreover, it has been shown that none of the re-
maining measures satisfies the following two conditions: (i) degree of confirmation is
maximal if E implies H; (ii) the a priori informativity (cashed out in terms of predic-
tive content and improbability) of a hypothesis contributes to degree of confirmation
(Brössel, 2013, 389–390). This means that the idea of confirmation as a generalization
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of partial entailment and as a reward for risky predictions cannot be reconciled with
each other, posing a further dilemma for confirmation monism. One may therefore go
for pluralism, and accept that there are different senses of degree of confirmation that
correspond to different explications. For example, d strikes us as a natural explication
of increase in subjective confidence, z generalizes deductive entailment, and l and k
measure the discriminatory force of the evidence regarding H and ¬H.

Although Bayesian Confirmation Theory yields many interesting results and has
sparked interests among experimental psychologists, too, one main criticism has been
levelled again and again: that it misrepresents actual scientific reasoning. In the re-
maining sections, we present two major challenges for Bayesian Confirmation Theory
fed by that feeling: the Problem of Old Evidence (Glymour, 1980b) and the rivalling
frequentist approach to learning from experience (Mayo, 1996).

5 The Problem of Old Evidence

In this brief section, we shall expose one of the most troubling and persistent chal-
lenges for confirmation as increase in firmness: the Problem of Old Evidence. Con-
sider a phenomenon E that is unexplained by the available scientific theories. At some
point, a theory H is discovered that accounts for E. Then, E is “old evidence”: at
the time when H is developed, the scientist is already certain or close to certain that
the phenomenon E is real. Nevertheless, E apparently confirms H—at least if H was
invented on independent grounds. After all, it resolves a well-known and persistent
observational anomaly.

A famous case of old evidence in science is the Mercury perihelion anomaly (Gly-
mour, 1980b; Earman, 1992). For a long time, the shift of the Mercury perihelion could
not be explained by Newtonian mechanics or any other reputable physical theory.
Then, Einstein realized that his General Theory of Relativity (GTR) explained the per-
ihelion shift. This discovery conferred a substantial degree of confirmation on GTR,
much more than some pieces of novel evidence. Similar reasoning patterns apply in
other scientific disciplines where new theories explain away well-known anomalies.

The reasoning of these scientists is hard to capture in the Bayesian account of
confirmation as increase in firmness. E confirms H if and only if the posterior degree
of belief in H, p(H|E), exceeds the prior degree of belief in H, p(H). When E is old
evidence and already known to the scientist, the prior degree of belief in E is maximal:
p(E) = 1. But with that assumption, it follows that the posterior probability of H
cannot be greater than the prior probability: p(H|E) = p(H) · p(E|H) ≤ p(H). Hence,
E does not confirm H. The very idea of confirmation by old evidence, or equivalently,
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confirmation by accounting for well-known observational anomalies, seems impossible
to describe in the Bayesian belief kinematics. Some critics, like Clark Glymour, have
gone so far to claim that Bayesian confirmation only describes epiphenomena of genuine
confirmation because it misses the relevant structural relations between theory and
evidence.

There are various solution proposals to the Problem of Old Evidence. One ap-
proach, adopted by Howson (1984), interprets the confirmation relation with respect
to counterfactual degrees of belief, where E is subtracted from the agent’s actual back-
ground knowledge. Another approach is to claim that confirmation by old evidence
is not about learning the actual evidence, but about learning a logical or explanatory
relation between theory and evidence. It seems intuitive that Einstein’s confidence in
GTR increased upon learning that it implied the perihelion shift of Mercury, and that
this discovery was the real confirming event.

Indeed, confirmation theorists have set up Bayesian models where learning H ` E
increases the probability of H (e.g., Jeffrey, 1983) under certain assumptions. The
question is, of course, whether these assumptions are sufficiently plausible and realis-
tic. For critical discussion and further constructive proposals, see Earman (1992) and
Sprenger (2015a).

6 Bayesianism and Frequentism

A major alternative to Bayesian Confirmation Theory is frequentist inference. Many
of its principles have been developed by the geneticist and statistician R.A. Fisher (see
Neyman and Pearson, 1933, for a more behavioral account). According to frequentism,
inductive inference does not concern our degrees of belief. That concept is part of
individual psychology and not suitable for quantifying scientific evidence. Instead
of expressing degrees of belief, probability is interpreted as the limiting frequency
of an event in a large number of trials. It enters inductive inference via the concept
of a sampling distribution, that is, the probability distribution of an observable in a
random sample.

The basic method of frequentist inference is hypothesis testing, and more precisely,
null hypothesis significance tests (NHST). For Fisher, the purpose of statistical anal-
ysis consists in assessing the relation of a hypothesis to a body of observed data. The
tested hypothesis usually stands for the absence of an interesting phenomenon, e.g.,
no causal relationship between two variables, no observable difference between two
treatments, etc. Therefore it is often called the default or null hypothesis (or shortly,
null). In remarkable agreement with Popper, Fisher states that the only purpose of an
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experiment is to “give the facts a chance of disproving the null hypothesis” (Fisher,
1925, 16): the purpose of a test is to find evidence against the null. Conversely, fail-
ure to reject the null hypothesis does not imply positive evidence for the null (on this
problem, see Popper, 1954; Sprenger, 2015b).

Unlike Popper (1959), Fisher aims at experimental and statistical demonstrations
of a phenomenon. Thus, he needs a criterion for when an effect is real and not an
experimental fabrication. He suggests that we should infer to such an effect when the
observed data are too improbable under the null hypothesis:

“either an exceptionally rare chance has occurred, or the theory [=the null
hypothesis] is not true.” (Fisher, 1956, 39)

This basic scheme of inference is called Fisher’s Disjunction by (Hacking, 1965), and it
stands at the heart of significance testing. It infers to the falsity of the null hypothesis
as the best explanation of an unexpected result (for criticism, see Spielman, 1974;
Royall, 1997).

Evidence against the null is measured by means of the the p-value. Here is an
illustration. Suppose that we want to test whether the real-valued parameter θ, our
quantity of interest, diverges “significantly” from H0 : θ = θ0. We collect i.i.d. data
x := (x1, . . . , xN) whose distribution is Gaussian and centered around θ. Assume now
that the population variance σ2 is known, so xi ∼ N(θ, σ2) for each xi. Then, the
discrepancy in the data x with respect to the postulated mean value θ0 is measured by
means of the statistic

z(x) :=
1
N ∑N

i=1 xi − θ0√
N · σ2

We may re-interpret this equation as

z =
observed effect− hypothesized effect

standard error

Determining whether a result is significant or not depends on the p-value or observed
significance level, that is, the “tail area” of the null under the observed data. This
value depends on z and can be computed as

pobs := p(|z(X)| ≥ |z(x)|),

that is, as the probability of observing a more extreme discrepancy under the null
than the one which is actually observed. Figure 1 displays an observed significance
level p = 0.04 as the integral under the probability distribution function—a result that
would typically count as substantial evidence against the null hypothesis (“p < .05”).
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Figure 1: The probability density function of the null H0 : X ∼ N(0, 1), which is
tested against the alternative H1 : X ∼ N(θ, 1), θ 6= 0. The shaded area illustrates the
calculation of the p-value for an observed z-value of z = ±2.054 (p = 0.04).

For the frequentist practitioner, p-values are practical, replicable and objective mea-
sures of evidence against the null: they can be computed automatically once the sta-
tistical model is specified, and only depend on the sampling distribution of the data
under H0. Fisher interpreted them as “a measure of the rational grounds for the disbe-
lief [in the null hypothesis] it augments” (Fisher, 1956, 43).

The virtues and vices of significance testing and p-values have been discussed
at length in the literature (e.g., Cohen, 1994; Harlow et al., 1997), and it would go
beyond the scope of this article to deliver a comprehensive critique. By now, it is
consensus that inductive inference based on p-values leads to severe epistemic and
practical problems. Several alternatives, such as confidence intervals at a pre-defined
level α, have been promoted in recent years (Cumming and Finch, 2005; Cumming,
2013). They are interval estimators defined as follows: for each possible value θ′ of
the unknown parameter θ, we select the interval of data points x that will not lead
to a statistical rejection of the null hypothesis θ = θ′ in a significance test at level α.
Conversely, the confidence interval for θ, given an observation x, comprises all values
of θ that are consistent with x in the sense of surviving a NHST at level α.

We conclude by highlighting the principal philosophical difference between
Bayesian and frequentist inference. The following principle is typically accepted by
Bayesian statisticians and confirmation theorists alike:

Likelihood Principle (LP): Consider a statistical model M with a set of
probability measures p(·|θ) parametrized by a parameter of interest θ ∈ Θ.

23



Assume we conduct an experiment E in M. Then, all evidence about
θ generated by E is contained in the likelihood function p(x|θ), where the
observed data x are treated as a constant. (Birnbaum, 1962)

Indeed, in the simple case of only two hypotheses (H and ¬H), the posterior proba-
bilities are only a function of p(E|H) and p(E|¬H), given the prior probabilities. This
is evident from writing the well-known Bayes’ Theorem as

p(H|E) =
(

1 +
p(¬H)

p(H)

p(E|¬H)

p(E|H)

)−1

So Bayesians typically accept the LP, as is also evident from the use of Bayes factors as
a measure of statistical evidence.

Frequentists reject the LP: his or her measures of evidence, such as p-values, are
based on the probability of results that could have happened, but did actually not happen.
The evidence depends on whether the actual data fit the null better or worse than
most other possible data (see Figure 1). By contrast, Bayesian induction is “actual-
ist”: the only thing that matters for evaluating the evidence and making decisions is
the predictive performance of the competing hypotheses on the actually observed ev-
idence. Factors that determine the probability of possible, but unobserved outcomes,
such as the experimental protocol, the intentions of the experimenter, the risk of early
termination, etc., may have a role in experimental design, but they do not matter for
measuring evidence post hoc (Edwards et al., 1963; Sprenger, 2009).

The Likelihood Principle is often seen as a strong argument for preferring Bayesian
to frequentist inference (e.g., Berger and Wolpert, 1984). In practice, statistical data
analysis still follows frequentist principles more often than not: mainly because in
many applied problems, it is difficult to elicit subjective degrees of belief and to model
prior probability distributions.

7 Conclusion

This chapter has given an overview of the problem of induction and the responses
that philosophers of science have developed over time. These days, the focus is not so
much on providing an answer to Hume’s challenge: it is well-acknowledged that no
purely epistemic, non-circular justification of induction can be given. Instead, focus
has shifted to characterizing valid inductive inferences, carefully balancing attractive
theoretical principles with judgments and intuitions in concrete cases. That this is not
always easy has been demonstrated by challenges such as the paradox of the ravens,
the problem of irrelevant conjunctions and Goodman’s new riddle of induction.
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In the context of this project, degree of confirmation becomes especially impor-
tant: it indicates to what extent an inductive inference is justified. Explications of
confirmation can be distinguished into two groups: qualitative and quantitative ones.
The first serve well to illustrate the “grammar” of the concept, but they have limited
applicability.

In Section 4 and 5, we have motivated why probability is an adequate tool for
explicating degree of confirmation and investigated probabilistic (Bayesian) confirma-
tion measures. We have distinguished two senses of confirmation—confirmation as
firmness and confirmation as increase in firmness—and investigated various confir-
mation measures. That said, there are also alternative accounts of inductive reason-
ing, some of which are non-probabilistic, such as Objective Bayesianism (Williamson,
2010), ranking functions (Spohn, 1990), evidential probability (Kyburg, 1961) and the
Dempster-Shafer theory of evidence (Shafer, 1976). See also Haenni et al. (2011).

Finally, we have provided a short glimpse of the methodological debate between
Bayesians and frequentists in statistical inference. Confirmation theory will have to
engage more and more with debates in statistical methodology if it does not want to
lose contact to inductive inference in science—which was Bacon’s target in the first
place.

Suggested Readings

For qualiatitive confirmation theory, the classical texts are Hempel (1945a,b). For
an overview of various logics of inductive inference with scientific applications, see
Haenni et al. (2011). A classical introduction to Bayesian reasoning, with comparison
to frequentism, is given by Howson and Urbach (2006). Earman (1992) and Crupi
(2013) offer comprehensive reviews of Bayesian confirmation theory, and Good (2009)
is an exciting collection of essays in induction, probability and statistical inference.
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