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Abstract

Bayesian model selection has frequently been the focus of philosoph-
ical inquiry (e.g., Forster 1995; Bandyopadhyay and Boik 1999; Dowe et
al. 2007). This paper argues that Bayesian model selection procedures are
very diverse in their inferential target and their justification, and substan-
tiates this claim by means of case studies on three selected procedures:
MML, BIC and DIC. Hence, there is no tight link between Bayesian model
selection and Bayesian philosophy. Consequently, arguments for or against
Bayesian reasoning based on properties of Bayesian model selection pro-
cedures should be treated with great caution.

1. Introduction

Model selection is a relatively young subfield of statistics that compares sta-

tistical models on the basis of their structural properties and their fit to the

data. The goal of model selection consists in comparing and appraising various

candidate models on the basis of observed data.1

Following up on Forster and Sober’s seminal (1994) paper, the problem

of model selection attracted much attention in philosophy of science. The

properties of various model selection procedures have been used to argue for

general theses in philosophy of science, such as the replacement of truth by

predictive accuracy as an achievable goal of science (Forster 2002), the predic-

tion/accommodation problem (Hitchcock and Sober 2004), the realism/instrumentalism

dichotomy (Mikkelson 2006; Sober 2008), and the aptness of Bayesian reasoning

for statistical inference (Forster 1995; Bandyopadhyay et al. 1996; Bandyopad-

hyay and Boik 1999; Dowe et al. 2007).

This paper explores the extent to which Bayesian model selection procedures

are anchored within Bayesian philosophy, and in particular their philosophical

∗Contact information: Tilburg Center for Logic and Philosophy of Science, Tilburg Univer-
sity, P.O. Box 90153, 5000 LE Tilburg, The Netherlands. Email: j.sprenger@uvt.nl. Webpage:
www.laeuferpaar.de

1In this paper, I understand “model selection” in a quite broad sense. That is, the statistical
analysis need not lead to the selection of a particular model. More appropriate might be
“model comparison”, but I would like to stick with the traditional terminology.
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justification. A model selection procedure is called “Bayesian” when it assigns

prior and posterior probabilities to a parameter of interest. These probabilities

are interpreted as rational degrees of belief (e.g., Bernardo and Smith 1994).

The classical, subjective view of Bayesian inference consists in reasoning from

the prior to the posterior: high posterior probability becomes a measure of the

acceptability of a hypothesis.2 Scientific inference, including model selection, is

based on this posterior distribution of beliefs. Accordingly, proponents of the

Bayesian view of scientific rationality claim that “scientific reasoning is essen-

tially reasoning in accordance with the formal principles of probability”(Howson

and Urbach 1993, xvii) – see also Earman (1992, 142) and Talbott (2008).

However, such an orthodox subjective reading of Bayesianism is seldom put

into practice. First, there is a plethora of practical and methodological prob-

lems, such as are the computational costs of calculating posterior distributions

or handling nested models in a Bayesian framework. Second, when prior prob-

abilities are assigned, reliable expert opinion is usually hard to elicit so that

the choice of the prior is often dominated by mathematical convenience. Fur-

thermore, results may be highly sensitive to the prior distribution. Third, even

some Bayesian statisticians argue that their work is more guided by a focus on

testing model adequacy than by genuinely subjective Bayesian belief revision

(Gelman and Shalizi 2012).

Thus, the practice of Bayesian reasoning often differs from eliciting prior

degrees of belief and updating them to posterior degrees of beliefs, as one may

näıvely imagine. In the following sections, we analyze the foundations of three

popular and much-discussed Bayesian model selection procedures – MML, BIC

and DIC – in order to uncover the philosophical foundations of Bayesian model

selection. As a result of this analysis, we conclude that these procedures are

very diverse in the target which they aim at and the justification that they pos-

sess. Instead of conforming to the subjective Bayesian rationale, they are hybrid

procedures: they do not primarily aim at an accurate representation of subjec-

tive uncertainty, but use the Bayesian calculus as a convenient mathematical

tool for diverse epistemological goals. This has, as I shall argue in the conclu-

sions, substantial repercussions on some bold methodological claims regarding

Bayesian reasoning that are made in the literature.

2This is different from objective Bayesian inference where the two basic constraints of
Bayesian inference – a coherent prior distribution and conditionalization on incoming evidence
– are supplemented by further requirements that narrow down the set of rational degrees of
belief, often up to uniqueness.
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2. MML and the Conditionality Principle

To avoid equivocations, I begin by fixing some terminology, following Forster

(2002, S127). A statistical (point) hypothesis is a specific probability distribu-

tion from which the data may have been generated, e.g., the standard Normal

distribution N(0, 1). A statistical model refers, by contrast, to families of hy-

potheses, e.g. all Normal distributions of the form N(θ, σ2) with parameter

values θ ∈ R, σ2 ∈ R≥0.

For data x1, . . . , xN , let us consider a candidate model M ∈ M with a

respective set of parameters. A model selection criterion is a function of the

data that assigns scores to point hypotheses or overarching models. On the basis

of that score, the different models or point hypothesis can be compared, ranked

or averaged. Quite often, we will identify point hypotheses with fitted models:

namely when a particular hypothesis has been obtained by fitting parameters

to the data. For example, a typical fitted model replaces the parameter values

in the general Normal model
〈
N(θ, σ2), (θ, σ2) ∈ R× R≥0

〉
by their maximum

likelihood estimates on the basis of data x: the values θ̂ and σ̂2 such that for

any other θ and σ2: p(x|θ̂, σ̂2) ≥ p(x|θ, σ2), for probability density p(·) and data

x. While some model selection procedures evaluate models in terms of expected

predictive accuracy (e.g., Akaike 1973), others, typically classified as Bayesian,

aim at the model with the highest posterior probability (e.g., Schwarz 1978).

Now we can turn to the Minimum Message Length (MML) principle (Wallace

2005; Dowe 2011). MML is a statistical inference procedure aiming at inferring

the hypothesis (“theory”)

that allows the data to be stated in the shortest two-part message,

where the first part of the message asserts the theory, and the second

part of the message asserts the data under the assumption that the

asserted theory is true. (Dowe et al. 2007, 717)

The basic idea is to infer the best explaining hypothesis, which is explicated

as the explanation with the shortest expected message length in a probabilistic

code. That is, the explanation has to trade off the plausibility of the hypothesis

with the likelihood of the data under the hypothesis.

We illustrate this idea by means of an example (cf. Dowe et al. 2007, 721–

722). Assume we want to estimate the parameter θ in a Binomial model B(N, θ),

where X quantifies the number of successes in N trials. Then MML partitions

the sample space X = {0, . . . , N} into K interval sets Ik = {ck−1, . . . , ck − 1}
with c0 = 0 and cK = N + 1. Let kj be a weakly monotonic sequence such that

j ∈ Ikj . Then, for each Ikj we define a corresponding point estimate θ̂kj of θ

such that any 0 ≤ j ≤ N is mapped to θ̂kj .
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Ikj 0 1-6 7-17 18-32 33-49 50-66 67-81 82-93 94-99 100

θ̂kj 0 0.035 0.12 0.25 0.41 0.58 0.74 0.875 0.965 1

Table 1: The optimal MML partitioning of the sample space (=the number

of successes) into intervals Ikj and the corresponding parameter estimates θ̂kj ,
for the case of the Binomial distribution B(100, θ) with a uniform prior. See
Wallace (2005, 157–160) and Dowe et al. (2007, 721–722).

Assuming a uniform prior over θ, the expected message length of estimator

θ̂ is measured by the term

L := −

 N∑
j=0

p(X = j)
(

log p(θ̂kj ) + log p(X = j|θ̂kj )
) . (1)

In the case of N=100, the optimal partition works with 10 different point esti-

mates, see Table 1. Notably, the “natural” unbiased estimator X/N does not

perform well on this count: the low prior probability of the associated intervals,

which only consist of a singleton set, diminishes the overall score of X/N .

From a Bayesian point of view: the two components of L correspond to the

two core components of Bayesian inference: the (log-)prior of the hypothesis

(here: θ̂kj ) and the (log-)likelihood of the data, given that hypothesis (here:

p(X = j|θ̂kj )).3 MML proponents then argue that an inference to the theory

that allows for the shortest two-part message will also be an inference to the

most probable theory (or model), vindicating the use of Bayesianism in model

selection, contra Forster and Sober (1994) and Forster (1995): “Bayes not Bust!”

(Dowe et al. 2007).

However, since we measure expected total message length, the optimal trade-

off depends on the design of the experiment and in particular the sample size,

cf. equation (1). This is actually admitted by the inventors of MML:

The receiver of an explanation message is assumed to have prior

knowledge on the set X of possible data, and the message is coded

on that assumption. [...] The optimum explanation code requires

than one assertion or estimate value serve for a range of distinct

but similar possible data values. Hence, it seems inevitable that the

assertion [=hypothesis] used to explain the given data will depend to

some extent on what distinct but similar possible data values might

have occurred but did not. (Wallace 2005, 254, my emphasis)

What is more, for the entire idea of the “shortest explanation”, we have to

choose between different conceptualizations of the hypothesis space, dependent

3Recall also that logP (H|E) · P (E) = log p(H) + logP (E|H).
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on the chosen experimental design. This situation is in itself remarkable: while

classical Bayesian reasoning considers the set of candidate models as fixed, MML

aims at finding the partition of the hypothesis space that allows for the most

efficient encoding of hypothesis and data.

These dependencies conflict, however, with subjective Bayesian epistemol-

ogy, and one of its core principles, the Likelihood Principle:

all the information about θ obtainable from an experiment is con-

tained in the likelihood function Lx(θ) = p(x|θ) for θ given x. Two

likelihood functions for θ (from the same or different experiments)

contain the same information about θ if they are proportional to one

another (Berger and Wolpert 1984, 19)

To see how closely the Likelihood Principle aligns with Bayesian inference, recall

the identity

p(H|E) =

(
1 +

p(¬H)

p(H)

p(E|¬H)

p(E|H)

)−1

which is just another way of expressing Bayes’s Theorem. From a Bayesian

point of view, the likelihood function encompasses all relevant experimental

information that is not already contained in the priors.

The Likelihood Principle demands in particular that the inference one draws

do not depend on the space of possible outcomes, or on the sampling protocol.

Whereas in an MML inference, the same data will lead to different best estimates

of θ when obtained from a Binomial design or a Negative Binomial design,

respectively.

At this point, one may doubt that the Likelihood Principle is compelling

for a Bayesian statistician, so much the more as the wording chosen by Berger

and Wolpert is admittedly vague. Therefore it is important to realize that it is

actually equivalent to the conjunction of the following two principles:

Sufficiency Let E be an experiment with a statistical model parametrized by

θ ∈ Θ and random variable X. If T (X) is a sufficient statistic for θ, that

is, if it satisfies p(X = x|T = t, θ) = p(X = x|T = t), and ET is the

experiment where any outcome x of E is represented by reporting the

value T (x), then E and ET yield the same evidence about θ.

(Strong) Conditionality If E is any experiment having the form of a mixture

of component experiments Ei, then for each outcome (Ei, xi) of E, [...]

the evidential meaning of any outcome x of any mixture experiment E is

the same as that of the corresponding outcome xi of the experiment Ei

which has actually been performed, ignoring the overall structure of the

mixed experiment. (cf. Birnbaum 1962, 270–71)
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Since the Sufficiency Principle is unanimously endorsed by both Bayesian and

frequentist statisticians, we can focus our inquiry on the (Strong) Conditionality

Principle. Informally, Conditionality can be described as asserting the irrele-

vance of experiments that were actually not performed. From a Bayesian point

of view, this is eminently sensible; after all, the entire idea of Bayesian Condi-

tionalization is based on taking into account (only) evidence that has actually

occurred. Indeed, a lot of Bayesian arguments in statistical methodology and

experimental design (e.g., with respect to optional stopping) are based on the

soundness of that principle and explicitly on the irrelevance of which results

might have been observed (cf. Royall 1997). So Conditionality and MML are

directly at odds with each other.

The conflict is, by the way, known from other foundational debates in statis-

tical inference. For instance, reference Bayesians such as Bernardo (2011) deter-

mine reference priors for Bayesian inference as a function of the sample space.

Seen in that light, MML is somewhat typical for modern Bayesian statistics and

its departure from Bayesian orthodoxy. It exemplifies a hybrid approach, where

the Bayesian machinery is primarily a mathematical and conceptual toolbox for

solving a specific problem whose definition does not depend on the Bayesian

framework itself: determining the shortest explanation, the most efficient cod-

ing of theory and evidence. This is not meant to doubt that MML shares more

with Bayesianism than related model selection criteria (e.g., Grünwald’s (2005)

Minimum Description Length principle). But it is interesting to see that an

identity in formalism, and even an explicit appeal to Bayesian principles can

still hide substantial philosophical differences.

3. Bayesianism Without Model Priors: BIC

We now proceed to the next case study: Schwarz’s Bayesian Information Cri-

terion (BIC). The BIC is an estimation procedure that aims at the posterior

probability of a parametric model Mθ, that is, at the weighted sum of the pos-

terior probabilities of the hypotheses in Mθ that correspond to different values

of θ. We will now reconstruct and analyze the motivation of BIC, following

Schwarz (1978).

Assume that Mθ is one of our candidate models, whose elements are indexed

by a parameter vector θ with model dimension K. We would like to approximate

the posterior probability of Mθ. Assume further that all probability densities

for data x (with respect to the Lebesgue measure µ) belong to the exponential

family and that they can be written as

p(x|θ) = eN(A(x)−λ|θ−θ̂(x)|2). (2)

Here, θ̂(x) denotes the maximum likelihood estimate of the unknown θ, and

6



N the sample size, assuming independent sampling. This specific form of the

likelihood function seems to make a substantial presumption, but in fact, the

densities in (2) comprise the most familiar distributions, such as the Normal,

Uniform, Fisher, Poisson and Student’s t−distribution. For that reason, the

assumption is plausible from a practical point of view.

Then we take a standard Bayesian approach and write the posterior prob-

ability of Mθ as proportional to the prior probability p(Mθ) and the averaged

likelihood of the data x under Mθ:

p(Mθ|x) ∼ p(Mθ)

∫
θ∈Θ

eN(A(x)−λ|θ−θ̂(x)|2)dµ(θ)

= p(Mθ) e
NA(x)

∫
θ∈Θ

e−Nλ|θ−θ̂(x)|2dµ(θ).

Substituting the integration variable θ by θ/
√
Nλ, and realizing that for the

maximum likelihood estimate θ̂(x), p(x|θ̂(x)) = eNA(x), we obtain

log p(Mθ|x) ∼ log p(Mθ) +NA(x) + log

(
1

Nλ

)K/2
+ log

∫
θ∈Θ

e−|θ−θ̂(x)|2dµ(θ)

= log p(Mθ) +NA(x) +
1

2
K log

(
1

Nλ

)
+ log

√
π
K

= log p(Mθ) + log p(x|θ̂(x))− 1

2
K log

(
Nλ

π

)
. (3)

Let us take stock. On the left hand side, we have the log-posterior probability,

a subjective Bayesian’s model comparison criterion. As we see from (3), this

term is proportional to the sum of three terms: log-prior probability, the log-

likelihood of the data under the maximum likelihood estimate, and a penalty

proportional to the number of model parameters. This derivation, whose as-

sumptions are relaxed subsequently in order to yield more general results, forms

the mathematical core of BIC.4

In practice, it is difficult to elicit sensible subjective prior probabilities of the

candidate models, and the computation of posterior probabilities involves high

computational efforts. Therefore, Schwarz suggests to estimate log-posterior

probability by a large sample approximation. For large samples, we neglect

the terms in (3) that make only constant contributions and focus on the terms

that increase in N : log p(Mθ) drops out of the picture. Therefore, in the long

run, the model with the highest posterior probability will be the model that

minimizes

BIC(Mθ, x) = −2 log p(x|θ̂(x)) + K logN. (4)

BIC is intended to estimate the model (not the hypothesis) that accumulates,

in the long run, the most posterior mass. However, it neglects the contribution

4The number of parameters K enters the calculations because the expected likelihood of
the data depends on the dimension of the model, via the skewness of the likelihood function.
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of the priors when comparing the models to each other. Keeping in mind the

identity

log p(H|E) = log p(H) + log

(
p(E|H) · 1

p(E)

)
(5)

wee see that BIC could as well be described as an approximation to the log-ratio

measure of confirmation log p(H|E)− log p(H) (up to addition of a constant).

Therefore, BIC should not be described as having a properly Bayesian jus-

tification: while (log-ratio) confirmation may be suitable for comparing models

on the basis of the evidence (e.g., Milne 1996), it is not suitable for Bayesian

inference since the priors drop out of the picture, as witnessed by the transition

from (3) to (4).

This finding is, by the way, in agreement with Schwarz’ note that BIC ex-

tends “beyond the Bayesian context” (1978, 461).5 Even more, frequentist

properties are sometimes invoked in an attempt to justify the practical use of

BIC (e.g., Burnham and Anderson 2002).

To further strengthen this conclusion, note that BIC is quite different from

a numerical large sample approximation for posterior degrees of belief: the

posterior approximated by BIC is detached from subjective prior probability.

So BIC is not just a practical approximation to Bayesian coherence. Com-

pare BIC to techniques such as Gibbs sampling or Monte Carlo Markov Chains

(Han and Carlin 2001): those techniques aim at numerical approximations of

subjective posterior distributions, and offer computational help for tricky multi-

dimensional integrals. BIC develops a different philosophical rationale.

Neither does the statistical consistency of BIC provide a genuinely Bayesian

justification. Here, consistency does not denote logical consistency with another

proposition, but a certain long-run property of statistical estimators. That is,

as sample size increases, the model favored by BIC converges in probability to

the true model as long as the overall model is not misspecified. However, both

Bayesians and frequentists regard consistency as a necessary constraint on good

estimators, not as a sufficient reason for using a particular method. So neither

is consistency in any way peculiar to Bayesian inference, nor is it strong enough

to make a case for BIC as opposed to other methods.

Our diagnosis that BIC lacks, in spite of the extensive use of Bayesian for-

malism, a fully Bayesian rationale, is supported by the variety of purposes to

which the criterion is put. Sometimes it is regarded as an approximation to the

Bayes factor (Kass and Raftery 1995). Raftery (1995) proposes an interpreta-

tion of BIC as an approximation to the integrated likelihood, which is easily

5Forster and Sober (1994, 23–24) doubt, for quite different reasons, that Schwarz’ Bayesian
approach achieves a satisfactory solution to the model selection problem. Notably they also
question “that it is securely grounded in the Bayesian framework.”
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derived on the basis of the above calculations. Romeijn et al. (2012) see dif-

ferent worries with a Bayesian understanding of BIC and propose to anchor it

more securely in Bayesian reasoning by taking into account the size of the pa-

rameter space. Hence, what is approximated by the asymptotic analysis of BIC

is not determined by the mathematics themselves and depends on the general

perspective one adopts.

4. Estimating Effective Complexity: DIC

In reply to the above diagnosis, it is sometimes objected that the distinction

between Bayesian and frequentist model selection procedures should be made

according to their inferential targets (Burnham and Anderson 2002, 2004). Ac-

cording to that proposal, even if the employed inferential strategies are not

properly Bayesian at every step, as we have seen for MML and BIC, the tar-

get of inference – the posterior probability of a model or a fitted model – can

only be formulated within a Bayesian framework. In support of this view, it is

sometimes asserted that “Bayesians assess an estimator by determining whether

the values it generates are probably true or probably close to truth” (Forster

and Sober 2011, 535) or “the model selection literature often errs that AIC

and BIC selection are directly comparable, as if they had the same objective

target model” (Burnham and Anderson 2004, 299). That is, where frequentist

methods, such as AIC, estimate the predictive performance of fitted models,

Bayesian methods, such as BIC, estimate the posterior probability of a given

model, or construct estimators that minimize mean error with respect to the

posterior distribution. To show that this picture is misleading or at least in-

complete, I conduct a further case study, namely on the Deviance Information

Criterion (DIC).

The DIC is another model selection criterion that is commonly placed in

the Bayesian family. Many model selection criteria, such as AIC and BIC,

can be written and interpreted as an explicit tradeoff of goodness-of-fit and

complexity. This is difficult in a specific context that we often encounter in

practice: complex, hierarchical models (cf. Henderson et al. 2010). That is,

when we represent the marginal distribution of the data x in a probability

model as

p(x) =

∫
θ∈Θ

p(x|θ) p(θ) dθ (6)

with parameter θ and prior density p(θ), we may sometimes choose to represent

that prior as being governed by a hyperparameter ψ:6

p(θ) =

∫
ψ∈Ψ

p(θ|ψ) p(ψ) dψ. (7)

6The marginal distribution of the data (6) is not affected by whether we parametrize the
prior with hyperparameter ψ according to (7).
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However, it is now unclear what should be considered the likelihood function of

the data: p(x|θ, ψ), p(x|θ) or p(x|ψ) (Bayarri et al. 1988)? Consequently, it is

unclear how complexity of the model should be measured: Should we base our

understanding of complexity on the dimension of θ, the dimension of ψ, or an

aggregate of both? Apart from this ambiguity, the complexity of a model also

depends on the amount of available prior information on the parameter values.

The more information we have, the less complex a model is. Straightforwardly

measuring complexity as the number of free parameters, as in the case of BIC,

is therefore inappropriate as a general procedure.

Therefore, Spiegelhalter et al. (2002) propose to measure complexity by com-

paring the expected deviance in the data (under the posterior distribution) to

the deviance in the estimate θ̃(x) that we would like to use. In other words,

complexity manifests itself in terms of “difficulty in estimation”. The authors

propose to measure surprise or deviance in the data x relative to a point hy-

pothesis parametrized by θ ∈ Θ by means of the canonical measure − log p(x|θ)
(Bernardo 1979).7 The Bayesian twist of DIC, as opposed to frequentist ap-

proaches, consists in incorporating prior information on the parameters: “it

seems reasonable that a measure of complexity may depend on both the prior

information concerning the parameters in focus and the specific data that are

observed” (Spiegelhalter et al. 2002, 585).

In particular, θ̃(x) denotes the Bayes estimator of the quantity of interest θ,

usually the posterior mean of θ. Then, we can compare the expected deviance

in the data (conditional on the posterior distribution of θ) to the deviance we

observe under our estimate of θ̃(x). This quantity pD indicates how difficult it

is to efficiently fit the parameters of a model Mθ:

pD(Mθ, x) = Eθ|x[−2 log p(x|θ)]− 2(− log p(x|θ̃(x)))

= 2 log p(x|θ̃(x))− 2

∫
θ∈Θ

log p(x|θ) p(θ|x) dθ (8)

where Eθ|x refers to the posterior expectation with respect to p(θ|x). Reading

(8) in yet another way, pD measures the extent to which our estimate θ̃(x) is

expected to overfit the data and how much deviance we can expect to observe

in the future. This interpretation connects pD to the predictive performance of

our estimate.
7There are several possible justifications for this particular measure; we give the one that we

find most simple and appealing. First of all, this function is inversely related to the probability
of x under θ. If x occurs and it was considered to be unlikely, the surprise under the parameter
value θ is high. Thus, the hypothesis gets “punished” by being assigned a high deviance
− log p(x|θ) from the data. Vice versa, if x is likely under θ, the hypothesis is “rewarded” by
being assigned a low deviance. Second, if the data x consist of several independent observations
(x1, . . . , xN ), then we should be able to decompose the overall deviance into the deviance of
the single observations. The − log p(x|θ) function accounts for that feature in a particularly
natural and intuitive way since log p(x1, . . . , xN |θ) =

∑
i log p(xi|θ): the overall deviance of

independent observations is the sum of the individual deviances.
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Indeed, pD has been used regularly for assigning scores to candidate models,

and it serves as the basis of the Deviance Information Criterion (DIC), a model

comparison procedure trading off deviance and complexity. DIC is defined as

DIC(Mθ, x) = E[D(θ, x)] + pD(Mθ, x) (9)

where the function D(·, ·) is defined as

D(θ, x) = −2 log p(x|θ) + 2 log f(x) (10)

for some standardized function of the data f(x). Taking into account that (10)

is mainly a function of the deviance between model Mθ and data x, we can

regard the overall DIC score in (9) as a tradeoff between goodness of fit (the

D-term) and the expected overfit (pD).

The form of DIC already illustrates that its target of inference is not partic-

ularly Bayesian. The difficulty of accurately fitting a model is relevant for the

practitioner (e.g., for checking the adequacy of a model), but not of intrinsic

interest for the orthodox Bayesian reasoner. On the other hand, there are many

Bayesian elements in DIC: the estimator θ̃(x), whose deviance is estimated in

equation (8), is nothing but the posterior mean of θ, and it is evaluated with

respect to the posterior distribution of θ. Also, Spiegelhalter et al. (2002) show

how DIC can be understood as an approximate estimator of posterior expected

loss.

The inventors of pD and DIC are actually aware of that tension and clarify

that they believe a rigorous Bayesian justification to be neither available nor

necessary:

Our approach here can be considered to be semiformal. Although

we believe that it is useful to have measures of fit and complexity,

and to combine them into overall criteria that have some theoreti-

cal justification, we also feel that an overformal approach to model

‘selection’ is inappropriate since so many other features of a model

should be taken into account before using it as a basis for reporting

inferences [...]. (Spiegelhalter et al. 2002, 602)

DIC is thus a formidable example of a hybrid, eclectic approach to inference

in model selection: it is inspired by Bayesianism, frequentism and statistical

decision theory. Notably, this eclecticism can go either way: For instance, if the

amount of prior information is substantial compared to the data set, then the

classical, frequentist AIC can be calibrated as to asymptotically approximate

the Bayes factor of different models (Kass and Raftery 1995), or it can be
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represented as a more general Bayesian criterion (Forster and Sober 2011).8

From this analysis, we see that the idea to identify Bayesian model selection

by means of its inferential targets is not convincing. In particular, DIC clearly

demonstrates that the targets of Bayesian model selection procedures are much

more nuanced and varied than just posterior probabilities or Bayes estimates.

Second, and more generally, target and justification of a model selection proce-

dure are usually intertwined and hard to separate from each other.

5. Conclusions

What do Bayesian model selection procedures teach us about Bayesian philos-

ophy of science? Their explicitly Bayesian formalism suggests that they are

supported by a full-fledged Bayesian philosophy of inference. A closer look re-

veals, however, that this claim is not substantiated. Popular Bayesian model

selection procedures, such as MML, BIC and DIC, may only partially conform

to Bayesian reasoning, even if they are firmly anchored within the Bayesian for-

malism. Rather, they should be described as hybrid procedures: the Bayesian

calculus may serve a different goal (MML: efficient coding), some crucial ele-

ments of Bayesian reasoning may be dropped (BIC: subjective priors), and ideas

and techniques from different philosophies (DIC: Bayesianism, decision theory,

frequentism) may be mixed. This need not conflict with a general classification

as Bayesian model selection procedures, but it highlights differences in target,

justification and intended application context.

Accordingly, the question of what justifies these procedures cannot be an-

swered in full generality. Neither of them has a general frequentist or Bayesian

justification. Consequently, the adequacy of the chosen procedure depends on

whether the implicit assumptions in the derivations of the procedures are satis-

fied. For example, BIC discounts the priors and focuses on asymptotic behavior,

whereas DIC is particularly apt in hierarchical models, etc. MML, on the other

hand, does not work with a fixed set of candidate models: efficiently partitioning

the model space is already an essential part of the inference problem! This is

a crucial difference to BIC and DIC. The practitioner faces the non-trival task

to ensure that a model selection procedure is adequate for a given application

context.

Thus, there is no unified “Bayesian philosophy of model selection” exem-

plified in MML, BIC and DIC. This has repercussions on attempts to exploit

properties of Bayesian model selection procedures for an assessment of Bayesian

statistical inference in general. For example, Forster and Sober (1994) write:

8Resampling procedures, cross-validation, provide another benchmark for model selection
procedures (Stone 1977; Forster 2007), and it is an empirical question to what extent they
can perform this function better or worse than a Bayesian analysis.
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Bayesianism is unable to capture the proper significance of consider-

ing families of curves [...] Akaike’s reconceptualization of statistics

does recommend that the foundations of Bayesian statistics require

rethinking. (Forster and Sober 1994, 26, original emphasis)

Other authors, on the contrary, promote Bayesianism because of the appar-

ent success of Bayesian model selection in practice. For instance, Dowe et al.

(2007) defend MML on grounds of its generality, efficiency and invariance under

transformations of the parameter space. Then they conclude:

Since MML is a Bayesian technique we should conclude that the best

philosophy of science is Bayesian. (Dowe et al. 2007, 712)

However, we have seen that an implicit premise of such arguments – namely that

Bayesian model selection is firmly anchored in Bayesian philosophy – is usually

not satisfied. Therefore it is hard to draw a general moral from Bayesian model

selection for the philosophical dispute between Bayesians and frequentists. Such

a negative conclusion may not appeal to everyone, but to me, it seems the

most honest answer to the question of what kind of philosophical claims can be

supported by the statistical practice of model selection.
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